![](/study/2016-2017/files/study.2016-2017/exclamation-point-small.png)
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2010–2011 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
This program incorporates extensive studies in Pharmacology with a strong component of related biomedical sciences, providing a solid preparation for employment opportunities or for entry into graduate or professional training programs. Students must consult an adviser upon entering the program and at the beginning of U2 to verify courses and progress. Additional consultation at regular intervals is encouraged.
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2010
Instructors: Roy, Richard D W; Brown, Gregory G; Fagotto, Francesco; Zetka, Monique (Fall)
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Daoust, Michel; Tsantrizos, Youla S; Moitessier, Nicolas (Fall) Daoust, Michel; Fenster, Ariel; Schirrmacher, Ralf (Winter) Daoust, Michel; Fenster, Ariel (Summer)
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Daoust, Michel; Gleason, James L (Fall) Auclair, Karine; Daoust, Michel (Winter) Daoust, Michel; Schwarcz, Joseph A (Summer)
Physiology : Physiology of body fluids, blood, body defense mechanisms, muscle, peripheral, central, and autonomic nervous systems.
Terms: Fall 2010
Instructors: Wechsler, Ann; Gold, Phil; Cook, Erik (Fall)
Physiology : Physiology of cardiovascular, respiratory, digestive, endocrine and renal systems.
Terms: Winter 2011
Instructors: White, John H; Wechsler, Ann; Lauzon, Anne-Marie (Winter)
Physiology : Exercises illustrating fundamental principles in physiology: Biological Signals Acquisitions, Blood, Immunology, Neurophysiology, Neuromuscular Physiology.
Terms: Fall 2010
Instructors: Martinez Trujillo, Julio; Glavinovic, Mladen I; Jones, Russell (Fall)
Physiology : Exercises illustrating fundamental principles in physiology: Central Nervous System, Cardiovascular, Respiration, Exercise Physiology, Molecular Endocrinology.
Terms: Winter 2011
Instructors: Guevara, Michael R; Watt, Douglas; Farookhi, Riaz; Magder, Sheldon A (Winter)
Biochemistry : The generation of metabolic energy in higher organisms with an emphasis on its regulation at the molecular, cellular and organ level. Chemical concepts and mechanisms of enzymatic catalysis are also emphasized. Included: selected topics in carbohydrate, lipid and nitrogen metabolism; complex lipids and biological membranes; hormonal signal transduction.
Terms: Fall 2010
Instructors: St-Pierre, Julie; Dostie, Josee; Kiss, Robert (Fall)
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2011, Summer 2011
Instructors: Schoen, Daniel J; Chevrette, Mario; Western, Tamara (Winter) Dankort, David; Western, Tamara (Summer)
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2010, Winter 2011
Instructors: Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Fall) Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Winter)
Pharmacology and Therapeutics : Principles of pharmacology and toxicology. Frequently encountered drugs will be used as a focus to illustrate sites and mechanisms of action, distribution, metabolism, elimination and adverse side effects.
Terms: Fall 2010
Instructors: Zorychta, Edith; Hales, Barbara F (Fall)
Pharmacology and Therapeutics : This course further explores the basic principles of pharmacology as illustrated by drugs used in the treatment of disease. Emphasis is placed on drugs used for diseases prevalent in North America.
Terms: Winter 2011
Instructors: Hales, Barbara F; Clarke, Paul; Bowie, Derek (Winter)
Pharmacology and Therapeutics : Fundamental mechanisms by which toxic compounds damage a biological system (organelle, cell, organ, organism, ecosystem). Detection and quantification of toxicity and risk/benefit analysis are considered. Selected agents of current risk to human health or the environment are evaluated in depth.
Terms: Winter 2011
Instructors: Robaire, Bernard; Hales, Barbara F; Zorychta, Edith (Winter)
Pharmacology and Therapeutics : Chemistry, mechanisms of action and steps in drug development.
Terms: Fall 2010
Instructors: Miller, Gregory (Fall)
Pharmacology and Therapeutics : Changing nature of selected drug targets in light of advances in studying proteins in their native cellular milieu, in the context of intact tissues, organs and whole animals, highlighting several conceptual advances in pharmacological theory with bearing on how drug targets are viewed and characterized.
Terms: Winter 2011
Instructors: Hebert, Terence; McKinney, R. Anne (Winter)
Pharmacology and Therapeutics : Topics in pharmacology with an emphasis on molecular aspects and the nervous system; topics include molecular mechanisms of drug-action, cellular targets and rationale for therapeutics.
Terms: Fall 2010
Instructors: Almazan, Guillermina (Fall)
Pharmacology and Therapeutics : Selected topics in pharmacology of the endocrine, metabolic, and cardiovascular systems. Additional topics include: pharmacogenetics/pharmacogenomics, chronopharmacology, molecular structure in pharmacology, epigenetic targets in cancer chemotherapy, and stem cell therapies.
Terms: Winter 2011
Instructors: Bernard, Daniel (Winter)
15 credits selected as follows:
3 credits selected from:
Anatomy & Cell Biology : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2011
Instructors: Duchaine, Thomas; Pause, Arnim; Reinhardt, Dieter (Winter)
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2011
Instructors: Duchaine, Thomas; Pause, Arnim; Reinhardt, Dieter (Winter)
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2011
Instructors: Levine, Robert; Hewitt, Kathryn; Brouhard, Gary (Winter)
3 credits selected from:
Chemistry : The fundamentals of thermodynamics and chemical kinetics with applications to biomolecular systems. Thermodynamic and kinetic control of biological processes.
Terms: Fall 2010
Instructors: Galley, William Claude (Fall)
Chemistry : Similar to CHEM 223/CHEM 243. Emphasis on the use of biological examples to illustrate the principles of physical chemistry. The relevance of physical chemistry to biology is stressed.
Terms: Fall 2010, Winter 2011
Instructors: Blum, Amy (Fall) Cosa, Gonzalo (Winter)
3 credits selected from:
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: Fall 2010
Instructors: Seizilles de Mazancourt, Claire; Potvin, Catherine (Fall)
Mathematics & Statistics (Sci) : Examples of statistical data and the use of graphical means to summarize the data. Basic distributions arising in the natural and behavioural sciences. The logical meaning of a test of significance and a confidence interval. Tests of significance and confidence intervals in the one and two sample setting (means, variances and proportions).
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Khalili Mahmoudabadi, Abbas; Correa, Jose Andres (Fall)
Psychology : The statistical analysis of research data; frequency distributions; graphic representation; measures of central tendency and variability; elementary sampling theory and tests of significance.
Terms: Fall 2010, Winter 2011, Summer 2011
Instructors: Amsel, Rhonda N (Fall) Ostry, David J (Winter) Zangenehpour, Shahin (Summer)
6 credits selected from the following upper-level science courses:
Committee approval is required to substitute an upper-level science course not in the list below.
PHAR 599D1 and PHAR 599D2 are taken together.
* Note: Students may take either ANAT 458 or BIOC 458.
** Note: Students may take either CHEM 504 or PHAR 504.
Anatomy & Cell Biology : This course explores the functional organization of the human brain and spinal cord. The course focuses on how neuronal systems are designed to subserve specific motor, sensory, and cognitive operations.
Terms: Fall 2010
Instructors: Brawer, James; David, Samuel (Fall)
Anatomy & Cell Biology : An intensive study of the processes of protein secretion and cell membrane biogenesis. Emphasis on morphological aspects of the above processes, and on the major techniques which have provided experimental evidence, namely, subcellular fractionation, cytochemistry and quantitative electron microscope radioautography.
Terms: Fall 2010
Instructors: Bedford, Fiona Kay; McPherson, Peter Scott; Barker, Philip A (Fall)
Anatomy & Cell Biology : An integrated treatment of the properties of biological membranes and of intracellular signaling, including the major role that membranes play in transducing and integrating cellular regulatory signals. Biological membrane organization and dynamics; membrane transport; membrane receptors and their associated effectors; mechanisms of regulation of cell growth, morphology, differentiation and death.
Terms: Winter 2011
Instructors: Silvius, John R; Autexier, Chantal; Reinhardt, Dieter (Winter)
Biochemistry : Gene expression from the start of transcription to the synthesis of proteins, their modifications and degradation. Topics covered: purine and pyrimidine metabolism; transcription and its regulation; mRNA processing; translation; targeting of proteins to specific cellular sites; protein glycosylation; protein phosphorylation; protein turn-over; programmed cell death (apoptosis).
Terms: Winter 2011
Instructors: Branton, Philip E; Sonenberg, Nahum; Gehring, Kalle Burgess (Winter)
Biochemistry : Primary, secondary, tertiary and quaternary structure of enzymes. Active site mapping and site-specific mutagenesis of enzymes. Enzyme kinetics and mechanisms of catalysis. Multienzyme complexes.
Terms: Fall 2010
Instructors: Nagar, Bhushan; Gotte, Matthias; Rouiller, Isabelle (Fall)
Biochemistry : Chemistry of RNA and DNA, transcription and splicing of RNA and their control; enzymology of DNA replication. Special topics on transgenics, genetic diseases and cancer.
Terms: Fall 2010
Instructors: Dostie, Josee; Teodoro, Jose Guerreiro; Duchaine, Thomas (Fall)
Biochemistry : Covers biochemical mechanisms underlying central nervous system function. Introduces basic neuroanatomy, CNS cell types and morphology, neuronal excitability, chemically mediated transmission, glial function. Biochemistry of specific neurotransmitters, endocrine effects on brain, brain energy metabolism and cerebral ischemia (stroke). With examples, where relevant, of biochemical processes disrupted in human CNS disease.
Terms: Winter 2011
Instructors: Flores Parkman, Ana Cecilia; Mechawar, Naguib; Cermakian, Nicolas (Winter)
Biochemistry : An integrated treatment of the properties of biological membranes and of intracellular signaling, including the major role that membranes play in transducing and integrating cellular regulatory signals. Biological membrane organization and dynamics: membrane transport; membrane receptors and their associated effectors; mechanisms of regulation of cell growth, morphology, differentiation and death.
Terms: Winter 2011
Instructors: Silvius, John R; Autexier, Chantal; Reinhardt, Dieter (Winter)
Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.
Terms: Fall 2010
Instructors: Nilson, Laura; Zetka, Monique (Fall)
Biology (Sci) : A consideration of the fundamental processes and principles operating during embryogenesis. Experimental analyses at the molecular, cellular, and organismal levels will be presented and discussed to provide an overall appreciation of developmental phenomena.
Terms: Winter 2011
Instructors: Nilson, Laura; Rao, Yong; Dufort, Daniel (Winter)
Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.
Terms: Fall 2010
Instructors: Pollack, Gerald; Dent, Joseph Alan (Fall)
Biology (Sci) : The genes that cause cancer are altered versions of genes present in normal cells. The origins of these oncogenes, their genetic structure, regulation, and the biochemical properties of the oncogene-encoded proteins will be analyzed in an attempt to understand the origins of human and animal cancers.
Terms: Fall 2010
Instructors: Majewska, Loydie; Saleh, Maya; Dankort, David (Fall)
Biotechnology : Current methods and recent advances in biological, medical, agricultural and engineering aspects of biotechnology will be described and discussed. An extensive reading list will complement the lecture material.
Terms: Fall 2010
Instructors: Vogel, Jacalyn (Fall)
Chemistry : Topics covered may include the following: Aromatic compounds, heterocyclic chemistry, sulfur and phosphorus chemistry, organosulfur and organophosphorus compounds, and biomolecules such as lipids, carbohydrates, amino acids, polypeptides, DNA and RNA.
Terms: Fall 2010, Winter 2011
Instructors: Damha, Masad J (Fall) Sleiman, Hanadi (Winter)
Chemistry : This course will cover biologically relevant molecules, particularly nucleic acids, proteins, and their building blocks. In each case, synthesis and biological functions will be discussed. The topics include synthesis of oligonucleotides and peptides; chemistry of phosphates; enzyme structure and function; coenzymes, and enzyme catalysis; polyketides; antiviral and anticancer agents.
Terms: Winter 2011
Instructors: Damha, Masad J (Winter)
Chemistry : Computational methods used in drug design and discovery including QSAR, docking/scoring, molecular mechanics and molecular dynamics, QM/MM, library profiling and library design.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Experimental Medicine : An introduction to the biology of malignancy. A multidisciplinary approach dealing with the etiology of cancer, the biological properties of malignant cells, the host response to tumour cell growth and the principles of cancer therapy.
Terms: Fall 2010
Instructors: Thomson, David M P (Fall)
Experimental Medicine : Using problem-based learning, the course examines the various business interactions between researchers and their business partners in support and development of research into commercial endeavours using models such as venture capital, business partnerships, or grants-in-aid.
Terms: Winter 2011
Instructors: Bennett, Hugh P J; Clarke, K Steven (Winter)
Microbiology and Immun (Sci) : An introduction to the immune system, antigens, antibodies and lymphocytes. The course will cover the cellular and molecular basis of lymphocyte development and mechanisms of lymphocyte activation in immune responses.
Terms: Winter 2011
Instructors: Palfree, Roger; Alizadehfar, Reza; Piccirillo, Ciriaco (Winter)
Microbiology and Immun (Sci) : The ability to select and manipulate genetic material has lead to unprecedented interest in the industrial applications of procaryotic and eucaryotic cells. Beginning in the 1970s the introduction of and subsequent refinements to recombinant DNA technology and hybridoma technology transformed the horizons of the biopharmaceutical world. This course will highlight the important events that link basic research to clinical/commercial application of new drugs and chemicals.
Terms: Winter 2011
Instructors: Murgita, Robert A; Coutlee, Francois; Raz, Amir (Winter)
Microbiology and Immun (Sci) : An advanced course serving as a logical extension of MIMM 314. The course will integrate molecular, cellular and biochemical events involved in the ontogeny of the lymphoid system and its activation in the immune response. The course will provide the student with an up-to-date understanding of a rapidly moving field.
Terms: Fall 2010
Instructors: Fournier, Sylvie; Olivier, Martin; Fritz, Jörg (Fall)
Neurology and Neurosurgery : A survey of the functional organization of nerve cells, signalling in the nervous system, and principles of neural development. Topics include cell polarity, neurotransmitters, neurotrophins, receptors and second messengers, cell lineage, guidance of axon outgrowth, and nerve regeneration. Emphasis will be placed on analysis of neurons at the molecular level.
Terms: Winter 2011
Instructors: Cloutier, Jean-Francois; Ragsdale, David S; Ruthazer, Edward (Winter)
Pathology : Provides a fundamental understanding of the diseases prevalent in North America, for upper level students in the biological sciences. Includes: general responses of cells and organ systems to injury; assessment of individual diseases by relating the causes, symptoms, diagnosis, treatment and prevention to the primary biological abnormalities in each disorder.
Terms: Winter 2011
Instructors: Zorychta, Edith (Winter)
Pharmacology and Therapeutics : Possible untoward effects and reasons for drug (dis)approval.
Terms: Winter 2011
Instructors: Maysinger, Dusica; Miller, Gregory (Winter)
Pharmacology and Therapeutics : Mechanisms involved in different pathologies and drug actions.
Terms: Fall 2010
Instructors: McKinney, R. Anne; Maysinger, Dusica (Fall)
Pharmacology and Therapeutics : See PHAR 599D1 for course description.
Terms: Winter 2011
Instructors: Maysinger, Dusica; McKinney, R. Anne (Winter)
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2010
Instructors: Cooper, Ellis; Haghighi, Ali (Fall)
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in renal, respiratory and cardiovascular functions explored beyond the introductory level.
Terms: Winter 2011
Instructors: Hanrahan, John W; Mortola, Jacopo; Magder, Sheldon A (Winter)
Physiology : In-depth presentation of experimental results and hypotheses underlying our current understanding of topics in immunology, blood and fluids, and gastrointestinal physiology.
Terms: Winter 2011
Instructors: Martinez Trujillo, Julio; Blank, Volker Manfred; Jones, Russell (Winter)
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2010
Instructors: Watt, Douglas; Martinez Trujillo, Julio; Vollrath, Melissa (Fall)
Physiology : A discussion of the principal theories and interesting new developments in the study of ion channels. Based on a textbook, computer exercises and critical reading and presentation of research papers. Topics include: Properties of voltage-and ligand-gated channels, single channel analysis, structure and function of ion channels.
Terms: This course is not scheduled for the 2010-2011 academic year.
Instructors: There are no professors associated with this course for the 2010-2011 academic year.
Psychology : The course is an introduction to the field studying how human cognitive processes, such as perception, attention, language, learning and memory, planning and organization, are related to brain processes. The material covered is primarily based on studies of the effects of different brain lesions on cognition and studies of brain activity in relation to cognitive processes with modern functional neuroimaging methods.
Terms: Fall 2010, Summer 2011
Instructors: Petrides, Michalakis (Fall) Petrides, Michalakis (Summer)