![](/study/2016-2017/files/study.2016-2017/exclamation-point-small.png)
Note: This is the 2011–2012 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2011–2012 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Atmospheric & Oceanic Sciences : An introduction to physical meteorology designed for students in the physical sciences. Topics include: composition of the atmosphere; heat transfer; the upper atmosphere; atmospheric optics; formation of clouds and precipitation; instability; adiabatic charts.
Terms: Fall 2011
Instructors: Szejwach, Gerard (Fall)
Atmospheric & Oceanic Sciences : Laws of motion, geostrophic wind, gradient wind. General circulation of the atmosphere and oceans, local circulation features. Air-sea interaction, including hurricanes and sea-ice formation, extra-tropical weather systems and fronts, role of the atmosphere and oceans in climate.
Terms: Winter 2012
Instructors: Son, Seok-Woo (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 214
Atmospheric & Oceanic Sciences : Basic notions of radiative transfer and applications of satellite and radar data to mesoscale and synoptic-scale systems are discussed. Emphasis will be put on the contribution of remote sensing to atmospheric and oceanic sciences.
Terms: Winter 2012
Instructors: Fabry, Frederic; Szejwach, Gerard (Winter)
Winter
3 hours lecture
Prerequisite: ATOC 215
Atmospheric & Oceanic Sciences : Buoyancy, stability, and vertical oscillations. Dry and moist adiabatic processes. Resulting dry and precipitating convective circulations from the small scale to the global scale. Mesoscale precipitation systems from the cell to convective complexes. Severe convection, downbursts, mesocyclones.
Terms: Fall 2011
Instructors: Atallah, Eyad Hashem (Fall)
Atmospheric & Oceanic Sciences : Equations of motion in rotating coordinates, elementary applications, circulation and vorticity, the planetary boundary layer, synoptic scale motions, Rossby waves and inertial oscillations.
Terms: Fall 2011
Instructors: Straub, David N (Fall)
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Description of a geostrophic, hydrostatic atmosphere. Ageostrophic circulations and hydrostatic instabilities. Kinematic and thermodynamic methods of computing vertical motions. Tropical and extratropical condensation rates. Barotropic and equivalent barotropic atmospheres.
Terms: Fall 2011
Instructors: Atallah, Eyad Hashem (Fall)
Atmospheric & Oceanic Sciences : Half-hour briefing on atmospheric general circulation and current weather around the world using satellite data, radar observations, conventional weather maps, and analyses and forecasts produced by computer techniques.
Terms: Winter 2012
Instructors: Atallah, Eyad Hashem (Winter)
Winter
2 hours
Prerequisite (Undergraduate): ATOC 540 or permission of instructor
Restriction: Graduate students and final-year Honours Atmospheric Science students. Others by special permission.
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Loveys, James G; Rogers, Mathew (Fall) Loveys, James G (Winter) Fraiman, Nicolás (Summer)
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2011, Winter 2012
Instructors: Jonsson, Wilbur (Fall) Jonsson, Wilbur (Winter)
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Jonsson, Wilbur (Fall) Klemes, Ivo (Winter) Roth, Charles (Summer)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Xu, Jian-Jun (Fall) Xu, Jian-Jun (Winter) Eswarathasan, Suresh (Summer)
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2011
Instructors: Webb, Tracy (Fall)
Physics : The laws of thermodynamics and their consequences. Thermodynamics of P-V-T systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2012
Instructors: Ryan, Dominic (Winter)
* Students may take either ATOC 419 or CHEM 419
Atmospheric & Oceanic Sciences : Selected areas of atmospheric chemistry from field and laboratory to theoretical modelling are examined. The principles of atmospheric reactions (gas, liquid and heterogeneous phases in aerosols and clouds) and issues related to chemical global change will be explored.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
Atmospheric & Oceanic Sciences : Review of dry and moist atmospheric thermodynamics concepts. Atmospheric aerosols, nucleation of water and ice. Formation and growth of cloud droplets and ice crystals. Initiation of precipitation. Severe storms and hail. Weather modification. Numerical cloud models.
Terms: Fall 2011
Instructors: Yau, Man K (Fall)
Atmospheric & Oceanic Sciences : Solar and terrestrial radiation. Interactions of molecules, aerosols, clouds, and precipitation with radiation of various wavelengths. Radiative transfer through the clear and cloudy atmosphere. Radiation budgets. Satellite and ground-based measurements. Climate implications.
Terms: Winter 2012
Instructors: Huang, Yi (Winter)
Atmospheric & Oceanic Sciences : Introduction to the components of the climate system. Review of paleoclimates. Physical processes and models of climate and climate change.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
Atmospheric & Oceanic Sciences : The general circulation of the atmosphere and oceans. Atmospheric and oceanic general circulation models. Observations and models of the El Niño and Southern Oscillation phenomena.
Terms: Fall 2011
Instructors: Son, Seok-Woo (Fall)
Atmospheric & Oceanic Sciences : Analysis of current meteorological data. Quasi-geostrophic theory, including the omega equation, as it relates to extratropical cyclone and anticyclone development. Frontogenesis and frontal circulations in the lower and upper troposphere. Cumulus convection and its relationship to tropical and extratropical circulations. Diagnostic case study work.
Terms: Winter 2012
Instructors: Atallah, Eyad Hashem (Winter)
Chemistry : Selected areas of atmospheric chemistry from field and laboratory to theoretical modelling are examined. The principles of atmospheric reactions (gas, liquid and heterogeneous phases in aerosols and clouds) and issues related to chemical global change will be explored.
Terms: Winter 2012
Instructors: Ariya, Parisa A (Winter)
Winter
3 lectures
Prerequisites: CHEM 243, and CHEM 263 or CHEM 213 and CHEM 273, MATH 222 and MATH 315 (or equivalents) or permission of instructor.
Restriction: Not open to students who have taken ATOC 419, CHEM 619, or ATOC 619
Offered in even years. Students should register in ATOC 419 in odd years.
Computer Science (Sci) : Introduction to computer systems. Concepts and structures for high level programming. Elements of structured programming using FORTRAN 90 and C. Numerical algorithms such as root finding, numerical integration and differential equations. Non-numerical algorithms for sorting and searching.
Terms: Fall 2011, Winter 2012
Instructors: Friedman, Nathan; Ranj Bar, Amin (Fall) Pomerantz, Daniel; Friedman, Nathan (Winter)
3 hours
Prerequisite: differential and integral calculus.
Corequisite: linear algebra: determinants, vectors, matrix operations.
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computations. Credits for either of these courses will not count towards the 60-credit Major in Computer Science. COMP 208 cannot be taken for credit with or after COMP 250.
Mathematics & Statistics (Sci) : Examples of statistical data and the use of graphical means to summarize the data. Basic distributions arising in the natural and behavioural sciences. The logical meaning of a test of significance and a confidence interval. Tests of significance and confidence intervals in the one and two sample setting (means, variances and proportions).
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Khalili Mahmoudabadi, Abbas; Genest, Christian (Fall) Wolfson, David B (Winter) Hundemer, Axel W (Summer)
No calculus prerequisites
Restriction: This course is intended for students in all disciplines. For extensive course restrictions covering statistics courses see Section 3.6.1 of the Arts and of the Science sections of the calendar regarding course overlaps.
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar. Students should consult for information regarding transfer credits for this course.
Mathematics & Statistics (Sci) : First order equations, geometric theory; second order equations, classification; Laplace, wave and heat equations, Sturm-Liouville theory, Fourier series, boundary and initial value problems.
Terms: Winter 2012
Instructors: Tsogtgerel, Gantumur (Winter)
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2011
Instructors: Siwick, Bradley; Engelberg, Edith M (Fall)
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. Fermi-Dirac and Bose-Einstein distributions; applications.
Terms: Winter 2012
Instructors: Francois, Paul (Winter)
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2011
Instructors: Dasgupta, Keshav (Fall)