![](/study/2016-2017/files/study.2016-2017/exclamation-point-small.png)
Note: This is the 2013–2014 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Note: This is the 2013–2014 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
The Major Concentration Chemistry is not certified by the Ordre des Chimistes du Québec. Students interested in pursuing a career in Chemistry in Quebec are advised to take an appropriate B.Sc. program in Chemistry.
The Major Concentration Chemistry, which is restricted to students in the B.A. & Sc. or B.Sc./B.Ed., is a planned sequence of courses designed to permit a degree of specialization in this discipline.
* Required courses taken at CEGEP or elsewhere that are not credited toward the B.A. & Sc. or B.Sc./B.Ed. must be replaced by courses from the Complementary Course List equal to or exceeding their credit value. Regardless of the substitution, students must take at least 36 credits in this program.
Chemistry : The fundamentals of thermodynamics and chemical kinetics with applications to biomolecular systems. Thermodynamic and kinetic control of biological processes.
Terms: Fall 2013
Instructors: Sanctuary, Bryan Clifford (Fall)
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Tsantrizos, Youla S; Pavelka, Laura (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Lumb, Jean-Philip; Gauthier, Jean-Marc (Winter) Pavelka, Laura; Daoust, Michel; Huot, Mitchell (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2013, Winter 2014, Summer 2014
Instructors: Daoust, Michel; Gauthier, Jean-Marc; Huot, Mitchell; Perepichka, Dmytro; Pavelka, Laura (Fall) Daoust, Michel; Huot, Mitchell; Pavelka, Laura; Auclair, Karine (Winter) Pavelka, Laura; Daoust, Michel; Huot, Mitchell (Summer)
Chemistry : Illustrative experiments in physical chemistry. Laboratory section of CHEM 223.
Terms: Fall 2013
Instructors: Blum, Amy; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Fall)
Chemistry : Basic concepts of electronic structure and molecular bonding will be developed and applied to the understanding of common materials. Acid-base chemistry. Survey of the chemistry of the main group elements. Introduction to coordination and organometallic chemistry.
Terms: Winter 2014
Instructors: Moores-François, Audrey (Winter)
Chemistry : Qualitative and quantitative analysis. A survey of methods of analysis including theory and practice of semimicro qualitative analysis and representative gravimetric, volumetric and instrumental methods.
Terms: Fall 2013
Instructors: Sewall, Samuel Lewis (Fall)
Fall
Prerequisites: CHEM 110 and CHEM 120, or CHEM 115, or equivalent.
Corequisite: Students in CHEM 287 are required to take the laboratory, CHEM 297, either simultaneously with CHEM 287 or in the term following CHEM 287.
Restrictions: Not open to students who have taken CHEM 257D1/D2 or CHEM 277D1/D2.
Chemistry : Introductory experiments in analytical chemistry emphasizing classical and instrumental methods of quantitative analysis.
Terms: Fall 2013, Winter 2014
Instructors: Hamier, Jan; Sewall, Samuel Lewis; Gauthier, Jean-Marc; Mauzeroll, Janine (Fall) Hamier, Jan; Sewall, Samuel Lewis (Winter)
Fall, Winter
Prerequisites: CHEM 110 and CHEM 120, or CHEM 115, or equivalent.
Pre- or Co-requisite: CHEM 287.
Restriction: Not open to students who have taken CHEM 257D1/D2 or CHEM 277D1/D2.
18 credits selected from:
Chemistry : An introduction to the basic topics in atmospheric chemistry. The fundamentals of the chemical composition of the atmosphere and its chemical reactions. Selected topics such as; a smog chamber, acid rain, and the ozone hole, will be examined.
Terms: Winter 2014
Instructors: Kos, Gregor (Winter)
Chemistry : Illustrative experiments in physical chemistry. Laboratory section of CHEM 243.
Terms: Winter 2014
Instructors: Blum, Amy; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Winter)
Chemistry : Topics covered may include the following: Aromatic compounds, heterocyclic chemistry, sulfur and phosphorus chemistry, organosulfur and organophosphorus compounds, and biomolecules such as lipids, carbohydrates, amino acids, polypeptides, DNA and RNA.
Terms: Fall 2013, Winter 2014
Instructors: Gleason, James L (Fall) Sleiman, Hanadi (Winter)
Chemistry : The physicochemical properties of advanced materials. Topics discussed include photonics, information storage, 'smart' materials, biomaterials, clean energy materials, porous materials, and polymers.
Terms: Fall 2013
Instructors: Friscic, Tomislav (Fall)
Fall
Prerequisites: CHEM 110/CHEM 120 and PHYS 101/PHYS 102 or PHYS 131/PHYS 142, or CEGEP Physics and Chemistry, or equivalent. Prerequisite or Corerequisite: one of CHEM 203, CHEM 204, CHEM 223 and CHEM 243, CHEM 214 or equivalent; or one of PHYS 230 and PHYS 232, or equivalent; or permission of instructor.
Restriction: Not open to students who have taken or are taking PHYS 334.
Chemistry : An introduction to modern instrumental analysis emphasizing chromatography, electrochemical methods and computational data analysis. Analytical methods to be examined in detail include gas-liquid and high performance liquid chromatography, LC mass spectrometry, and advanced electro-analysis techniques
Terms: Fall 2013
Instructors: Mauzeroll, Janine; Power, Joan F; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Fall)
Chemistry : Introduction to transition metal chemistry, coordination numbers and geometry, and nomenclature will be followed by a discussion of crystal field theory and its applications to problems in spectroscopy, magnetochemistry, thermodynamics and kinetics. Several aspects related to applications of organometallic compounds in catalysis and bioinorganic systems will be discussed.
Terms: Fall 2013
Instructors: Arndtsen, Bruce A (Fall)
Fall
Prerequisite: CHEM 281.
Restriction: For Honours and Major Chemistry students
Chemistry : Structure, synthesis, stereochemistry and biosynthesis of terpenes, alkaloids, antibiotics and selected molecules of medicinal interest.
Terms: Winter 2014
Instructors: Tsantrizos, Youla S (Winter)
Winter
Prerequisite/corequisite: CHEM 302
Chemistry : Structure, bonding, synthesis, properties and applications of covalent, ionic, metallic crystals, and amorphous solids. Defect structures and their use in synthesis of specialty materials such as electronic conductors, semiconductors, and superconductors, and solid electrolytes. Basic principles of composite materials and applications of chemistry to materials processing.
Terms: Winter 2014
Instructors: Andrews, Mark P (Winter)
Winter
Prerequisite: CHEM 381
Chemistry : A survey of polymer preparation and characterization; mechanisms of chain growth, including free radical, cationic, anionic, condensation and transition metal-mediated polymerization, and the effects of these mechanisms on polymer architecture; preparation of alternating, block, graft and stereoblock copolymers; novel macromolecular structures including dendrimers and other nanostructures.
Terms: Winter 2014
Instructors: Kakkar, Ashok K (Winter)
Fall
Prerequisite: CHEM 302 or equivalent, or permission of instructor.
Chemistry : Introduction to supramolecular organization will be followed by discussions on the nature of interactions and methodologies to create ordered aggregates of high complexity. Potential of supramolecular chemistry in fabricating smart materials will be explored using specific topics including inclusion chemistry, dendrimers, molecular self-assembly and crystal engineering.
Terms: Fall 2013
Instructors: Sleiman, Hanadi (Fall)
Chemistry : The roles of transition and main group elements in biology and medicine will be examined with an emphasis on using tools for structure and genome searching as well as becoming acquainted with experimental spectroscopic methods useful for bioinorganic chemistry such as macromolecular X-ray diffraction, EPR and EXAFS.
Terms: This course is not scheduled for the 2013-2014 academic year.
Instructors: There are no professors associated with this course for the 2013-2014 academic year.
Winter
Prerequisite: CHEM 381
Restriction: For Honours and Major Chemistry students or with permission