![important](/study/2022-2023/files/study.2022-2023/exclamation-point-small.png)
Note: This is the 2023–2024 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
Note: This is the 2023–2024 eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or .
The B.Sc.; Major in Physics program covers a range of fundamental physical concepts from classical physics to modern topics relevant to contemporary research. The program may be completed in 60-63 credits.
Students entering Physics programs from the Freshman program must have successfully completed the courses below or their equivalents. Quebec students must have completed the DEC with appropriate science and mathematics courses.
Chemistry : A study of the fundamental principles of atomic structure, radiation and nuclear chemistry, valence theory, coordination chemistry, and the periodic table.
Terms: Fall 2023
Instructors: Sirjoosingh, Pallavi; Kakkar, Ashok K; McKeague, Maureen; Gauthier, Jean-Marc (Fall)
Fall
Prerequisites/corequisites: College level mathematics and physics or permission of instructor; CHEM 120 is not a prerequisite
Each lab section is limited enrolment
Chemistry : A study of the fundamental principles of physical chemistry.
Terms: Winter 2024
Instructors: Sirjoosingh, Pallavi; Sewall, Samuel Lewis; Wiseman, Paul; Gauthier, Jean-Marc; Denisova, Irina (Winter)
Winter
Prerequisites/corequisites: College level mathematics and physics, or permission of instructor: CHEM 110 is not a prerequisite
Each lab section is limited enrolment
Mathematics & Statistics (Sci) : Systems of linear equations, matrices, inverses, determinants; geometric vectors in three dimensions, dot product, cross product, lines and planes; introduction to vector spaces, linear dependence and independence, bases. Linear transformations. Eigenvalues and diagonalization.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Trudeau, Sidney; Collins-Woodfin, Elizabeth; Branchereau, Romain (Fall) Gerbelli-Gauthier, Mathilde (Winter) Bellemare, Hugues (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction A: Not open to students who have taken MATH 221 or CEGEP objective 00UQ or equivalent.
Restriction B: Not open to students who have taken or are taking MATH 123, except by permission of the Department of Mathematics and Statistics.
Restriction C: Not open to students who are taking or have taken MATH 134.
Physics : The basic laws and principles of Newtonian mechanics; oscillations, waves, and wave optics.
Terms: Fall 2023
Instructors: Pereg-Barnea, Tami (Fall)
Fall
3 hours lectures; 1 hour tutorial, 3 hours laboratory in alternate weeks; tutorial sessions
Corequisite: MATH 139 or higher level calculus course.
Restriction(s): Not open to students who have taken or are taking PHYS 101, or who have taken CEGEP objective 00UR or equivalent.
Laboratory sections have limited enrolment
Physics : The basic laws of electricity and magnetism; geometrical optics.
Terms: Winter 2024
Instructors: Guo, Hong (Winter)
Winter
3 hours lectures, 3 hours laboratory in alternate weeks; tutorial sessions
Prerequisite: PHYS 131.
Corequisite: MATH 141 or higher level calculus course.
Restriction: Not open to students who have taken or are taking PHYS 102, or who have taken CEGEP objective 00US or equivalent.
Laboratory sections have limited enrolment
7-8 credits from:
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Fortier, Jérôme; Cant, Dylan; Fu, Hao (Fall) Fortier, Jérôme (Winter) Sajjad, Alia (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Sroka, Marcin; Cairns, Hannah (Fall) Trudeau, Sidney; Macdonald, Jeremy; Mazakian, Hovsep (Winter) Mazakian, Hovsep; Abi Younes, Elio (Summer)
Mathematics & Statistics (Sci) : Functions, limits and continuity, differentiation, L'Hospital's rule, applications, Taylor polynomials, parametric curves, functions of several variables.
Terms: Fall 2023
Instructors: Roth, Charles (Fall)
Fall
3 hours lecture, 2 hours tutorial
Students with no prior exposure to vector geometry are advised to take MATH 133 concurrently. Intended for students with high school calculus who have not received six advanced placement credits
Restriction: Not open to students who have taken CEGEP objective 00UN or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics
MATH 150 and MATH 151 cover the material of MATH 139, MATH 140, MATH 141, MATH 222
Mathematics & Statistics (Sci) : Integration, methods and applications, infinite sequences and series, power series, arc length and curvature, multiple integration.
Terms: Winter 2024
Instructors: Roth, Charles (Winter)
Winter
3 hours lecture; 2 hours tutorial
Each Tutorial section is enrolment limited
Prerequisite: MATH 150
Restriction: Not open to students who have taken CEGEP objective 00UP or equivalent
Restriction: Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics
Restriction: Not open to students who have taken MATH 152
Note: Either MATH 140 and MATH 141 or MATH 150 and MATH 151.
* Students coming into the program with sufficient knowledge of computer programming may replace COMP 208 with PHYS 512 or another 3-credit COMP course at the 200 level or above after consulting with an adviser.
Computer Science (Sci) : Programming and problem solving in a high level computer language: variables, expressions, types, functions, conditionals, loops, objects and classes. Introduction to algorithms such as searching and sorting. Modular software design, libraries, file input and output, debugging. Emphasis on applications in Physical Sciences and Engineering, such as root finding, numerical integration, diffusion, Monte Carlo methods.
Terms: Fall 2023, Winter 2024
Instructors: Langer, Michael; Campbell, Jonathan (Fall) Parekh, Deven (Winter)
3 hours
Restrictions: Not open to students who have taken or are taking COMP 202, COMP 204, orGEOG 333; not open to students who have taken or are taking COMP 206 or COMP 250.
COMP 202 is intended as a general introductory course, while COMP 208 is intended for students with sufficient math background and in (non-life) science or engineering fields.
Mathematics & Statistics (Sci) : Review of matrix algebra, determinants and systems of linear equations. Vector spaces, linear operators and their matrix representations, orthogonality. Eigenvalues and eigenvectors, diagonalization of Hermitian matrices. Applications.
Terms: Fall 2023, Winter 2024
Instructors: Kelome, Djivede; Pichot, Mikael (Fall) Pichot, Mikael (Winter)
Mathematics & Statistics (Sci) : Derivative as a matrix. Chain rule. Implicit functions. Constrained maxima and minima. Jacobians. Multiple integration. Line and surface integrals. Theorems of Green, Stokes and Gauss. Fourier series with applications.
Terms: Fall 2023, Winter 2024
Instructors: Toth, John A (Fall) Allen, Patrick (Winter)
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2023, Winter 2024
Instructors: Hurtubise, Jacques Claude (Fall) Bélanger-Rioux, Rosalie (Winter)
Physics : Translational motion under Newton's laws; forces, momentum, work/energy theorem. Special relativity; Lorentz transforms, relativistic mechanics, mass/energy equivalence. Topics in rotational dynamics. Noninertial frames.
Terms: Fall 2023
Instructors: Guo, Hong (Fall)
Physics : The laws of thermodynamics and their consequences. Thermodynamics of P-V-T systems and simple heat engines. Free, driven, and damped harmonic oscillators. Coupled systems and normal modes. Fourier methods. Wave motion and dispersion. The wave equation.
Terms: Winter 2024
Instructors: Hilke, Michael (Winter)
Physics : Linear circuit elements, resonance, network theorems, diodes, transistors, amplifiers, feedback, integrated circuits.
Terms: Winter 2024
Instructors: Reisner, Walter (Winter)
Winter
2 hours lectures; 3 hours laboratory alternate weeks
Prerequisite: CEGEP physics or PHYS 142.
Physics : Introductory laboratory work and data analysis as related to mechanics, optics and thermodynamics. Introduction to computers as they are employed for laboratory work, for data analysis and for numerical computation. Previous experience with computers is an asset, but is not required.
Terms: Fall 2023
Instructors: Vachon, Brigitte (Fall)
Physics : Advanced laboratory work and data analysis as related to mechanics, optics and thermodynamics. Computers will be employed routinely for data analysis and for numerical computation, and, particularly, to facilitate the use of Fourier methods.
Terms: Winter 2024
Instructors: Cooke, David (Winter)
Winter
6 hours of laboratory and classroom work
Prerequisite: PHYS 257
Physics : Forced and damped oscillators, Newtonian mechanics in three dimensions, rotational motion, Lagrangian and Hamiltonian mechanics, small vibrations, normal modes. Nonlinear dynamics and chaos.
Terms: Winter 2024
Instructors: Gervais, Guillaume (Winter)
Physics : Introduction to modern techniques of measurement. The use of computers in performing and analysing experiments. Data reduction, statistical methods, report writing. Extensive use of computers is made in this laboratory; therefore some familiarity with computers and computing is an advantage.
Terms: Winter 2024
Instructors: Ryan, Dominic (Winter)
Winter
6 hours
Prerequisite: PHYS 241 or permission of instructor
Physics : The electrostatic field and scalar potential. Dielectric properties of matter. Energy in the electrostatic field. Methods for solving problems in electrostatics. The magnetic field. Induction and inductance. Energy in the magnetic field. Magnetic properties of matter. Maxwell's equations. The dipole approximation.
Terms: Fall 2023
Instructors: Lovejoy, Shaun MacDonald (Fall)
Physics : Maxwell's equations. The wave equation. The electromagnetic wave, reflection, refraction, polarization. Guided waves. Transmission lines and wave guides. Vector potential. Radiation. The elemental dipole; the half-wave dipole; vertical dipole; folded dipoles; Yagi antennas. Accelerating charged particles.
Terms: Winter 2024
Instructors: Gervais, Guillaume (Winter)
Physics : De Broglie waves, Bohr atom. Schroedinger equation, wave functions, observables. One dimensional potentials. Schroedinger equation in three dimensions. Angular momentum, hydrogen atom. Spin, experimental consequences.
Terms: Fall 2023
Instructors: Vachon, Brigitte (Fall)
Physics : One electron atoms, radiation, multielectron atoms, molecular bonds. Selected topics from condensed matter, nuclear and elementary particle physics.
Terms: Winter 2024
Instructors: Wang, Kai (Winter)
Restriction(s): Not open to students in the following programs: · Bachelor of Engineering (B.Eng.) - Honours Electrical Engineering · Bachelor of Engineering (B.Eng.) - Minor Physics · Bachelor of Science (B.Sc.) - Honours Mathematics and Physics · Bachelor of Science (B.Sc.) - Honours Physics · Bachelor of Science (B.Sc.) - Honours Physics and Chemistry · Bachelor of Science (B.Sc.) - Honours Physics and Computer Science
Restriction(s): Not open to students who have taken or are taking PHYS 457.
1. Winter
2. 3 hours lectures
0-3 credits from:
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Sabok, Marcin; Allen, Patrick (Fall) Trudeau, Sidney (Winter) Bibby, Sean (Summer)
* Students who did not complete an equivalent to MATH 222 on entering the program must take this course.
3 credits from:
Physics : This interdisciplinary course introduces Statistical Physics illustrated with modern biophysical applications. Principles covered include partition functions, Boltzmann distribution, bosons, fermions, Bose Einstein condensates, Ferni gases, chemical potential, thermodynamical forces, biochemical kinetics, and an introduction to noise and phase transitions in biology.
Terms: This course is not scheduled for the 2023-2024 academic year.
Instructors: There are no professors associated with this course for the 2023-2024 academic year.
Physics : Introductory equilibrium statistical mechanics. Quantum states, probabilities, ensemble averages. Entropy, temperature, Boltzmann factor, chemical potential. Photons and phonons. Fermi-Dirac and Bose-Einstein distributions; applications.
Terms: Winter 2024
Instructors: Rutledge, Robert (Winter)
12 credits from:
Physics : Emerging physical approaches and quantitative measurement techniques are providing new insights into longstanding biological questions. This course will present underlying physical theory, quantitative measurement techniques, and significant findings in molecular and cellular biophysics. Principles covered include Brownian motion, low Reynolds-number environments, forces relevant to cells and molecules, chemical potentials, and free energies. These principles are applied to enzymes as molecular machines, membranes, DNA, and RNA.
Terms: Winter 2024
Instructors: Reisner, Walter (Winter)
Physics : A survey of astrophysics ranging from stars and planets, to compact objects, galaxies, and the large-scale evolution of the Universe. A calculusbased course, with a focus on simple mathematical derivations that capture the essential physics.
Terms: Fall 2023
Instructors: Schutz, Katelin (Fall)
Physics : Data analysis methods as applied in experimental physics, with an emphasis on applications in observational astrophysics. An introduction to Bayesian inference, model selection, Markov Chain Monte Carlo, common probability distributions, jackknives and null tests, as they are used in the analysis of observational data from across the electromagnetic spectrum.
Terms: Winter 2024
Instructors: Webb, Tracy (Winter)
Physics : Semiconductor devices, basic transistor circuits, operational amplifiers, combinatorial and sequential logic, integrated circuits, analogue to digital converters. The laboratory component covers design, construction and testing of basic electronic circuits.
Terms: Fall 2023
Instructors: Hanna, David (Fall)
Fall
2 hours lectures; 3 hours laboratory
Prerequisite: PHYS 241 or permission of instructor
Physics : Advanced level experiments in physics including quantum effects and some properties of condensed matter physics and modern physics.
Terms: Winter 2024
Instructors: Ryan, Dominic (Winter)
Physics : This course covers the essentials of climate physics through the lens of one-dimensional, vertical atmospheric models. This includes shortwave and longwave radiative transfer, convection, phase changes, clouds, greenhouse gases, and atmospheric escape. This is an adequate level of detail for understanding Earth's climate, paleoclimate, anthropogenic climate change, or pursing studies of Solar System planets and extrasolar planets.
Terms: Fall 2023
Instructors: Huang, Yi (Fall)
Physics : The physical properties of fluids. The kinematics and dynamics of flow. The effects of viscosity and turbulence. Applications of fluid mechanics in biophysics, geophysics and engineering.
Terms: Winter 2024
Instructors: Lee, Eve (Winter)
Physics : Fundamental concepts of optics, including applications and modern developments. Light propagation in media; geometric optics and optical instruments; polarization and coherence properties of light; interference and interferometry; diffraction theory and applications in spectrometry and imaging; Gaussian beams, Fourier optics and photonic band structure. A laboratory component provides hands-on experience in optical setup design, construction and testing of concepts introduced in lectures.
Terms: Fall 2023
Instructors: Wang, Kai (Fall)
Physics : A supervised research project.
Terms: Fall 2023, Winter 2024
Instructors: Hanna, David (Fall) Hilke, Michael (Winter)
Winter or Summer
6 hours
Restrictions: U2 or U3 students in a Physics program, or permission of the instructor.
Physics : Honours supervised research project and thesis.
Terms: Fall 2023
Instructors: Gale, Charles (Fall)
Fall
6 hours
Restriction: Honours students or permission of instructor
Students must register for both PHYS 459D1 and PHYS 459D2.
No credit will be given for this course unless both PHYS 459D1 and PHYS 459D2 are successfully completed in consecutive terms
Physics : See PHYS 459D1 for course description.
Terms: Winter 2024
Instructors: Gale, Charles (Winter)
Winter
Prerequisite: PHYS 459D1
No credit will be given for this course unless both PHYS 459D1 and PHYS 459D2 are successfully completed in consecutive terms
Physics : Advanced level experiments in physics including quantum effects and some properties of condensed matter physics and modern physics.
Terms: Fall 2023
Instructors: Sankey (Childress), Jack (Fall)
Fall
6 hours
Restriction: Honours students or permission of instructor
Prerequisite: PHYS 258 or permission of the instructor
Corequisite: PHYS 457 or PHYS 447 or permission of the instructor.
Restriction: Open to honours and majors physics students
Student who have taken PHYS 359 will conduct different experiments in this course.
Physics : A supervised research project.
Terms: Fall 2023, Winter 2024, Summer 2024
Instructors: Hanna, David (Fall) Hilke, Michael (Winter) Wang, Kai (Summer)
6 hours
Restriction: U2 or U3 students in a Physics program, or permission of the instructor.
Physics : Computational methods in Physics illustrated with realworld applications.
Terms: Fall 2023
Instructors: Cumming, Andrew (Fall)
U3 or graduate students in Physics, Chemistry, or Engineering, or permission of the instructor. Basic familiarity with computer programming highly recommended.
Physics : An advanced biophysics course, with a special emphasis on stochastic and out of equilibrium physical processes in living matter.
Terms: Winter 2024
Instructors: Wiseman, Paul (Winter)
Physics : An advanced course in modern astrophysics, covering topics such as the basic tools of astronomy (statistics, mathematical methods, computational tools, and instrumentation); stellar astrophysics (properties, structure, atmospheres, binaries/exoplanets); the interstellar medium, star formation, stellar evolution and endpoints (white dwarfs, neutron stars, black holes); and the Milky Way, galaxies, and cosmology.
Terms: Fall 2023
Instructors: Rutledge, Robert (Fall)
Fall
3 hours
Restriction: U3 students and graduate students, or permission of the instructor
** NOTE: If chosen, PHYS 459D1 and PHYS 459D2 are taken together.
^ Note: A maximum of 6 credits of complementary courses may be from research courses PHYS 449, PHYS 479, and PHYS 459D1/459D2.
Note: It is possible for students to transfer from the Major to the Honours program after U1 year if they have passed all the 200-level required courses listed above and MATH 314 and MATH 315 with a C or better, and obtained a cumulative GPA of 3.5 or better in these courses. The written permission of an adviser is required for this change of program. The missing MATH 249 and PHYS 260 from the U1 Honours year should be taken in U2.